《应用数学学报》
一、反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
二、相遇问题公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
三、工程问题公式
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
四、利润与折扣公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
五、简易方程知识点
1、用字母表运算定律。
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2
长方形的面积公式:s=ab
正方形的周长公式:c=4a
正方形的面积公式:s=a×a
3、 读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)
速度=(路程)÷(时间)
时间=(路程)÷(速度)
总价=(单价)×(数量)
单价=(总价)÷(数量)
数量=(总价)÷(单价)
总产量=(单产量)×(数量)
单产量=(总产量)÷(数量)
数量=(总产量)÷(单价 )
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数
大数-相差数=小数
小数+相差数=大数
一倍量×倍数=几倍量
几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差
减数=被减数-差
加数=和-另一个加数
被除数=除数×商
除数=被除数÷商
因数=积÷另一个因数
《简易方程》同步试题
一、填空
1.用含有字母的式子填空并求值。
(1)一双筷子有2根,双筷子有( )根。
(2)如图:
车上现在有( )人;
当 =42时,车上现在有( )人;
当 =( )时,车上现在有33人。
(3)王明今年 岁,比李军小 岁,今年王明和李军共( )岁。
(4)如图:
糖糖的体重是( )千克;
当 时,糖糖的体重是( )千克。
考查目的:考查用字母表示数和求含有字母的式子的值。
答案:(1) ;(2) -6;36;39;(3) 或 ;(4) ;71.5。
解析:明确题目中数量间的基本关系,是解答此类题的关键。
(1)此题主要考查根据乘法的意义列式计算的能力。根据乘法的意义可知:用筷子的双数乘2即可计算出筷子的总根数,据此解答即可。
上一篇:山东国家应用数学中心揭牌 推动数学与产业融通
下一篇:没有了